Towards Practical MK-TFHE:

Parallelizable, Quasi-linear and Key-compatible

Hyesun Kwak, Seonhong Min, Yongsoo Song

Seoul National University, Seoul

Fully Homomorphic Encryption

- Fully Homomorphic Encryption (HE) supports arbitrary function evaluation on encrypted data.
- Various Applications: privacy preserving machine learning, private information retrieval, private set intersection ...

FHE for Multiple Parties

	MKHE	(n-out-of-n) Threshold HE
Key structure	$\bar{\mathbf{s}} := (s_1 s_2 \dots s_k)$	$\bar{\mathbf{s}} := \sum_{i=1}^k s_i$
Dynamic	Dynamic	Static
Communication	Independent	Interactive
Time/Space Complexity	Dependent to k	Comparable to single-key

Table: Comparison between Multi-Party HE schemes.

Previous Works

- Theoretical studies
 - LATV12, CM15, MW16, PS16, BP16, CZW17
 - (Mostly) GSW scheme
 - No implementations
- Practical schemes
 - CCS19¹: TFHE/FHEW, quadratic complexity
 - CDKS19²: CKKS/BFV, quadratic complexity
- Better time complexity
 - KKLSS22³: CKKS/BFV, quasi-linear complexity
 - This work : TFHE/FHEW, quasi-linear complexity

¹Chen, Chillotti and Song, Asiacrypt '19

²Chen, Dai, Kim and Song, CCS '19

³Kim, Kwak, Lee, Seo and Song, CCS '23

TFHE/FHEW scheme description

- FHE scheme that supports bits operations (NAND, AND, OR...).
- Secret Key:
 - LWE secret $\mathbf{s} = (s_1, \dots, s_n)$
 - RLWE secret $t \in R = \mathbb{Z}[X]/(X^N + 1)$
- Encoding: $m \in \{-1,1\} \mapsto \mu = \frac{q}{8}m \in \mathbb{Z}_q$
- **Decoding**: $\begin{cases} 1 & \text{if } \mu > 0 \\ -1 & \text{otherwise} \end{cases}$
- Encryption: $c = (b, \mathbf{a}) \in \mathbb{Z}_q^{n+1}$ for $\mathbf{a} \leftarrow \mathcal{U}(\mathbb{Z}_q^n)$, $e \leftarrow$ small dist., $b = -\langle \mathbf{a}, \mathbf{s} \rangle + \mu + e \pmod{q}$.
- **Decryption**: $b + \langle \mathbf{a}, \mathbf{s} \rangle = \mu + e \pmod{q}$

Homomorphic Gate Evaluation (TFHE/FHEW)

• Each bit operation consists of the following pipeline:

$$c_1 \longrightarrow c_2 \longrightarrow$$
 Linear Combination $\longrightarrow c \longrightarrow$ Bootstrapping $\longrightarrow c'$

- Linear Combination: The linear combination corresponding to a Boolean gate is evaluated.
 - ex) NAND : $c = (\frac{q}{8}, \mathbf{0}) c_1 c_2$
 - output ciphertext contains a large noise e.
- **Bootstrapping** : Reduces the size of noise for further evaluation.
 - ex) $\|e\| < \frac{q}{8} \rightarrow \|e'\| < \frac{q}{16}$
 - Consists of Blind Rotation and Key Switching

Blind Rotation

- Input : $\mathbf{c} = (b, \mathbf{a})$ such that $b + \langle \mathbf{a}, \mathbf{s} \rangle = \frac{q}{8}m + e \pmod{q}$.
- Let $\tilde{b} = \left\lfloor \frac{2N}{q} \cdot b \right\rceil$, $\tilde{\mathbf{a}} = \left\lfloor \frac{2N}{q} \cdot \mathbf{a} \right\rceil$. • $\tilde{b} + \langle \tilde{\mathbf{a}}, \mathbf{s} \rangle = \frac{2N}{8} m + \tilde{\epsilon} \pmod{2N}$.
- Pre-assign the coefficients to a polynomial tv, so that the constant term of $tv \cdot X^{\tilde{b}+\langle \tilde{a},s\rangle} \in R_q = R/qR$ is $\frac{q}{8}m$.
 - ▶ Since $X^N + 1 = 0$, mod 2N is naturally supported over the exponent.
- We can bootstrap the input ciphertext by computing $tv \cdot X^{\tilde{b}+\langle \tilde{\mathbf{a}},\mathbf{s}\rangle}$, and extracting the constant term.
- Homomorphically multiply $[X^{a_i s_i}]_t$ to $tv \cdot X^b$ iteratively.
- This is the main bottleneck of TFHE/FHEW bootstrapping.

MKTFHE description

- **Setup:** Each *i*-th party samples...
 - LWE secret $\mathbf{s}_i = (s_{i,1}, \dots, s_{i,n})$
 - RLWE secret $t_i \in R$
- MK secret is the concatenation of each party's secret.
 - LWE secret $\bar{\mathbf{s}} = (\mathbf{s}_1 | \dots | \mathbf{s}_k)$
 - RLWE secret $\overline{t} = (t_1, \ldots, t_k)$
- Ciphertext: $c = (b|\mathsf{a}_1|\dots|\mathsf{a}_k) \in \mathbb{Z}_q^{kn+1}$
 - $-b+\sum_{i=1}^k \langle \mathbf{a}_i,\mathbf{s}_i\rangle \approx \mu \pmod{q}.$
- **Decryption**: $b + \sum_{i=1}^{k} \langle \mathbf{a}_i, \mathbf{s}_i \rangle = \mu + e$

Blind Rotation (CCS19)

- Homomorphically multiply monomials $[X^{a_{i,j}s_{i,j}}]_{t_i}$ to $tv \cdot X^b$ iteratively.
- Major building block: Hybrid product
 - homomorphic multiplication between MK-RLWE ciphertext and single-key RGSW-style encryption.
 - $ightharpoonup \tilde{O}(kn)$ time complexity
- kn hybrid products, therefore overall time complexity is $\tilde{O}(k^2n^2)$.
- The timing scales quadratically as # of parties grows.

Our Idea

Motivation : Perform blind rotation party-wisely in a single-key manner, to achieve linear complexity $\tilde{O}(kn^2)$.

Challenge: No known homomorphic multiplication algorithm between multi-key and 'noisy' single-key ciphertexts.

Our Result: Generalized External Product

 A new homomorphic multiplication operation between MK-RLWE and generic single-key RGSW-like ciphertexts

Improved Hybrid Product

 We improve Hybrid product by reducing the number of gadget decompositions.

Faster Blind Rotation

- The time complexity is reduced to $\tilde{O}(kn^2)$.
- Parallelizable, Key-compatible.

Generalized External Product (Simplified)

Input:

- MK-RLWE encryption $\overline{\operatorname{ct}} = (c_0, \dots, c_k)$ such that $\sum_{j=0}^k c_j \cdot t_j \approx m \pmod{q}$.
- RGSW-like (noisy) encryption **C** of μ under secret t_i
- RGSW-like (fresh) encryption \mathbf{rlk} of t_i under secret t_i

• Idea:

- Multiply **C** to each index of $\overline{\text{ct}}$ to obtain MK-RLWE encryption $\overline{\text{ct}}' = (\mathbf{x}|\mathbf{y})$ of $m \cdot \mu$.
 - ▶ However, key is changed to $(1, t_i) \otimes (1, t_1, ..., t_k)!$
 - ▶ i.e., $\langle \mathbf{x}, (1, t_1, \dots, t_k) \rangle + \langle \mathbf{y}, t_i \cdot (1, t_1, \dots, t_k) \rangle \approx m \cdot \mu \pmod{q}$
- Multiply \mathbf{rlk} to \mathbf{y} using hybrid product, and add to \mathbf{x} .
 - ▶ Key is changed back to $(1, t_1, ..., t_k)$.
- Time complexity: $\tilde{O}(kn)$

Faster Blind Rotation

Our Algorithm:

- **①** Compute $[X^{\langle a_i, s_i \rangle}]_t$ for each *i*-th party with RGSW-like ciphertext.
- ② Multiply them to $X^b \cdot tv$ iteratively, using the generalized external product.

• Time Complexity:

- The first step requires $\tilde{O}(n^2)$ time complexity for each party.
- The second step requires k generalized external products.
- In total, the time complexity is $\tilde{O}(kn^2 + k^2n)$.
- In practice, $k \ll n$ and therefore **quasi-linear**.
- Parallelizable: The first step can be algorithmically parallelizable.
- **Key-Compatible:** The public key is identical to the single-key scheme, with an extra relinearization key.

Faster Blind Rotation

Figure: High-level overview of the blind rotation algorithm of MK variant of TFHE from CCS19 and Ours.

Timing Results

k	CCS19	Ours	Parallelized
2	0.24s	0.24s	0.17s
4	0.89s	0.88s	0.27s
8	3.32s	2.23s	0.35s
16	24.72s	5.65s	0.47s
32	-	13.94s	0.88s

Table: The elapsed time of our scheme and the CCS19 scheme.

- We achieve **4.38x** speedup without parallelization!
- **52.60x** speedup with parallelization!
- ullet CCS19 doesn't support a practical parameter for \geq 32 parties.

Timing Results

Figure: The elapsed time of our scheme and the CCS19 scheme.

• Julia: https://github.com/SNUCP/MKTFHE

• Go: https://github.com/sp301415/tfhe-go