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Fully Homomorphic Encryption

Fully Homomorphic Encryption (HE) supports arbitrary function
evaluation on encrypted data.

Various Applications: privacy preserving machine learning, private
information retrieval, private set intersection ...
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FHE for Multiple Parties

MKHE (n-out-of-n) Threshold HE

Key structure s := (s1|s2| . . . |sk) s :=
∑k

i=1 si

Dynamic Dynamic Static

Communication Independent Interactive

Time/Space
Complexity

Dependent to k Comparable to single-key

Table: Comparison between Multi-Party HE schemes.
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Previous Works

Theoretical studies

– LATV12, CM15, MW16, PS16, BP16, CZW17

– (Mostly) GSW scheme

– No implementations

Practical schemes

– CCS191 : TFHE/FHEW, quadratic complexity

– CDKS192 : CKKS/BFV, quadratic complexity

Better time complexity

– KKLSS223 : CKKS/BFV, quasi-linear complexity

– This work : TFHE/FHEW, quasi-linear complexity

1Chen, Chillotti and Song, Asiacrypt ’19
2Chen, Dai, Kim and Song, CCS ’19
3Kim, Kwak, Lee, Seo and Song, CCS ’23
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TFHE/FHEW scheme description

FHE scheme that supports bits operations (NAND, AND, OR. . . ).

Secret Key:
– LWE secret s = (s1, . . . , sn)

– RLWE secret t ∈ R = Z[X ]/(XN + 1)

Encoding: m ∈ {−1, 1} 7→ µ = q
8m ∈ Zq

Decoding:

{
1 if µ > 0

−1 otherwise

Encryption: c = (b, a) ∈ Zn+1
q for a← U(Zn

q), e ← small dist.,
b = −⟨a, s⟩+ µ+ e (mod q).

Decryption: b + ⟨a, s⟩ = µ+ e (mod q)
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Homomorphic Gate Evaluation (TFHE/FHEW)

Each bit operation consists of the following pipeline:

Linear Combination : The linear combination corresponding to a
Boolean gate is evaluated.

– ex) NAND : c = ( q8 , 0)− c1 − c2

– output ciphertext contains a large noise e.

Bootstrapping : Reduces the size of noise for further evaluation.

– ex) ∥e∥ < q
8 → ∥e

′∥ < q
16

– Consists of Blind Rotation and Key Switching
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Blind Rotation

Input : c = (b, a) such that b + ⟨a, s⟩ = q
8m + e (mod q).

Let b̃ =
⌊
2N
q · b

⌉
, ã =

⌊
2N
q · a

⌉
.

▶ b̃ + ⟨ã, s⟩ = 2N
8 m + ẽ (mod 2N).

Pre-assign the coefficients to a polynomial tv , so that the constant

term of tv · X b̃+⟨ã,s⟩ ∈ Rq = R/qR is q
8m.

▶ Since XN + 1 = 0, mod 2N is naturally supported over the exponent.

We can bootstrap the input ciphertext by computing tv · X b̃+⟨ã,s⟩,
and extracting the constant term.

Homomorphically multiply [X ai si ]t to tv · X b iteratively.

This is the main bottleneck of TFHE/FHEW bootstrapping.

H. Kwak, S. Min, Y. Song Towards Practical MK-TFHE 7 / 16



MKTFHE description

Setup: Each i-th party samples...

– LWE secret si = (si,1, . . . , si,n)
– RLWE secret ti ∈ R

MK secret is the concatenation of each party’s secret.

– LWE secret s = (s1| . . . |sk)
– RLWE secret t = (t1, . . . , tk)

Ciphertext: c = (b|a1| . . . |ak) ∈ Zkn+1
q

– b +
∑k

i=1 ⟨ai , si ⟩ ≈ µ (mod q).

Decryption: b +
∑k

i=1 ⟨ai , si ⟩ = µ+ e
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Blind Rotation (CCS19)

Homomorphically multiply monomials [X ai,j si,j ]ti to tv · X b iteratively.

Major building block: Hybrid product
▶ homomorphic multiplication between MK-RLWE ciphertext and

single-key RGSW-style encryption.

▶ Õ(kn) time complexity

kn hybrid products, therefore overall time complexity is Õ(k2n2).

The timing scales quadratically as # of parties grows.
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Our Idea

Motivation : Perform blind rotation party-wisely in a single-key manner, to
achieve linear complexity Õ(kn2).

Challenge : No known homomorphic multiplication algorithm between
multi-key and ‘noisy’ single-key ciphertexts.

Our Result : 1 Generalized External Product
– A new homomorphic multiplication operation between

MK-RLWE and generic single-key RGSW-like ciphertexts

2 Improved Hybrid Product
– We improve Hybrid product by reducing the number of

gadget decompositions.

3 Faster Blind Rotation
– The time complexity is reduced to Õ(kn2).
– Parallelizable, Key-compatible.
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Generalized External Product (Simplified)

Input:

– MK-RLWE encryption ct = (c0, . . . , ck) such that
∑k

j=0 cj · tj ≈ m
(mod q).

– RGSW-like (noisy) encryption C of µ under secret ti

– RGSW-like (fresh) encryption rlk of ti under secret ti

Idea:
– Multiply C to each index of ct to obtain MK-RLWE encryption

ct
′
= (x|y) of m · µ.
▶ However, key is changed to (1, ti )

⊗
(1, t1, . . . , tk)!

▶ i.e., ⟨x, (1, t1, . . . , tk)⟩+ ⟨y, ti · (1, t1, . . . , tk)⟩ ≈ m · µ (mod q)

– Multiply rlk to y using hybrid product, and add to x.

▶ Key is changed back to (1, t1, . . . , tk).

Time complexity: Õ(kn)
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Faster Blind Rotation

Our Algorithm:
1 Compute [X ⟨ai ,si ⟩]t for each i-th party with RGSW-like ciphertext.

2 Multiply them to X b · tv iteratively, using the generalized external
product.

Time Complexity:
– The first step requires Õ(n2) time complexity for each party.

– The second step requires k generalized external products.

– In total, the time complexity is Õ(kn2 + k2n).

– In practice, k ≪ n and therefore quasi-linear.

Parallelizable: The first step can be algorithmically parallelizable.

Key-Compatible: The public key is identical to the single-key
scheme, with an extra relinearization key.
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Faster Blind Rotation

Figure: High-level overview of the blind rotation algorithm of MK variant of
TFHE from CCS19 and Ours.
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Timing Results

k CCS19 Ours Parallelized

2 0.24s 0.24s 0.17s

4 0.89s 0.88s 0.27s

8 3.32s 2.23s 0.35s

16 24.72s 5.65s 0.47s

32 - 13.94s 0.88s

Table: The elapsed time of our scheme and the CCS19 scheme.

We achieve 4.38x speedup without parallelization!

52.60x speedup with parallelization!

CCS19 doesn’t support a practical parameter for ≥32 parties.
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Timing Results

Figure: The elapsed time of our scheme and the CCS19 scheme.
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Julia : https://github.com/SNUCP/MKTFHE

Go : https://github.com/sp301415/tfhe-go
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