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Introduction



Fully Homomorphic Encryption
• Fully Homomorphic Encryption 
‣ Enables an unlimited number of computations over encrypted data. 

• Somewhat HE (SHE) can be constructed from (R)LWE 
‣Only supports a limited number of multiplications. 

‣Not FHE. 

• Bootstrapping [Gen09] 
‣Homomorphic evaluation of decryption circuit. 

‣The message remains the same, introduces a noise with fixed size. 

‣The main bottleneck of homomorphic computation.



FV (Fan-Vercauteren) Scheme
• Scheme description 

‣ Base ring :  

‣ Secret key : ,  a ternary polynomial with small Hamming weight. 

‣Message :  for plaintext modulus . 

‣ Ciphertext :  for ciphertext modulus .  

- Encrypt : , , and set . 

- Decrypt : . 

- Message in the MSB, noise in the LSB.

R = ℤ[X]/Φm(X)

𝗌𝗄 ∈ R

μ(X) ∈ Rt = R/tR t

(b, a) ∈ R2
q = (R/qR)2 q

a ← 𝒰(Rq) e ← χ b = − a ⋅ 𝗌𝗄 + ⌊q/t⌉ ⋅ μ + e

⌊t/q ⋅ (b + a ⋅ 𝗌𝗄)⌉ = ⌊t/q ⋅ (⌊q/t⌉ ⋅ μ + e)⌉ = μ



FV (Fan-Vercauteren) Scheme

• SIMD arithmetic 

‣ For a prime number ,   

- For , the multiplicative order of  in group , . 

- Each  is a degree  (monic) irreducible polynomial. 

‣We can perform SIMD arithmetic over . 

‣ Usually, we encode only the constant term and use  arithmetic.

p ∤ m Rp = ℤp[X]/Φm(X) ≅
k

∏
i=1

ℤp[X]/Fi(X)

d p ℤ×
m k = ϕ(m)/d

Fi(X) d

GF(pd)k

ℤk
p



FV (Fan-Vercauteren) Scheme

• SIMD arithmetic (2) 

‣Hensel’s lifting lemma gives the relation . 

‣We can use SIMD arithmetic over . 

• Plaintext Change 

‣ In FV context,  is equivalent to . 

➡Just a simple change of plaintext modulus! (Change of interpretation…) 

‣ This operation is often referred as ‘homomorphic division’. 

Rps ≅
k

∏
i=1

ℤps[X]/F̃i(X)

ℤk
ps

p ⋅ ⃗m ∈ ℤk
ps m ∈ ℤk

ps−1



FV (Fan-Vercauteren) Scheme
• Scale-Invariant Scheme 
‣ Since the message is stored in MSB, FV is invariant to (ciphertext) scaling. 

‣Given an encryption  of message , 

-  is still an encryption of , 

- As long as rounding error does not interfere the message part.

𝖼𝗍 = (c0, c1) ∈ R2
q μ ∈ Rt

(⌊q′￼/q ⋅ c0⌉, ⌊q′￼/q ⋅ c1⌉) ∈ R2
q′￼

μ

q′￼ < q

q′￼ > q



Bootstrapping of FV
Input :  encrypting . 

1. ModSwitch (+ Dot Product, SubSum) 
‣ Change the ciphertext modulus to  

- i.e., generate  

- To make the decryption circuit as compact as possible. 

‣Generate encryption of  

- Simply compute  

‣ Embed  into the ‘valid’ encoding space. 

- Note that  is totally random. 

- Therefore, the SIMD encoding of  may not be valid. 

- Can be computed with automorphisms.

𝖼𝗍 = (b, a) ∈ R2
q μ(X) ∈ Rps

pr

(b′￼, a′￼) = (⌊pr /q ⋅ b⌉, ⌊pr /q ⋅ a⌉) ∈ R2
pr

[b′￼+ a′￼⋅ 𝗌𝗄]pr = pr−s ⋅ μ + e ∈ Rpr

(⌊q/pr⌉ ⋅ b′￼, ⌊q/pr⌉ ⋅ a′￼) ∈ R2
q

e

e

ℤk
pr



Bootstrapping of FV
2. Coeffs2Slots 
‣Homomorphically move the coefficients of plaintext to the slots. 

- i.e., generate encryption of , the coefficient vector of . 

- This can be performed with homomorphic matrix multiplication. 

3. DigitExtract 

‣Homomorphically remove the noise part . 

- i.e., generate encryption of . 

- Consists of a number of polynomial evaluations. 

4. Slots2Coeffs 

‣Homomorphically move the slots to the coefficients. 

- i.e., generate encryption of  

- Can be performed via a homomorphic matrix multiplication.

pr−s ⋅ ⃗μ + ⃗e ∈ ℤk
ps pr−s ⋅ μ(X) + e(X)

e

⃗μ ∈ ℤk
ps

μ(X)



Bootstrapping of FV
Functionality Coefficients Message

- -

ModSwitch    Switch the ciphertext modulus to ?

Coeffs2Slots Move the coefficients to slots ?

DigitExtract Homomorphically remove the noise ?

Slots2Coeffs Move the slots to coefficients

pr pr−s ⋅ μ(X) + e(X) ∈ Rpr

{pr−s ⋅ μi + ei} ∈ ℤk
pr

{μi} ∈ ℤk
ps

μ(X) ∈ Rps {mi}1≤i≤k ∈ ℤk
ps

μ(X) ∈ Rps {mi}1≤i≤k ∈ ℤk
ps



Digit Extraction
• Given , homomorphically compute  

‣ There is no polynomial directly compute this. 

‣We utilise homomorphic division to circumvent this problem. 

‣ There exists a series of ‘Digit Extraction Polynomial’ . 

-  

- i.e. Extracts the last digit of the given number. 

‣ Remove LSB iteratively, using digit extraction polynomials.

ur−1ur−2…u0 ∈ ℤpr ur−1ur−2…ur−s ∈ ℤps

{Gi}1≤i

Gi(x) = [x]p (mod pi)



Digit Extraction
• Input     :  

• Output :  

‣ . 

‣ . 

‣  

➡ Homomorphic division by ! 

‣ Repeat this procedure for  times. 

‣ In practice, there exists a depth optimisation. (See [CH18], [GIKV22])

u := ur−1ur−2…u0 ∈ ℤpr

ur−1ur−2…ur−s ∈ ℤpr

Gr(u) = 0…0u0 ∈ ℤpr

u − Gr(u) = ur−1…u10 = p ⋅ (ur−1…u1)

(u − Gr(u))/p = ur−1…u1 ∈ ℤpr−1

p

r − s



Our Work



Our Contribution

• Homomorphic LUT evaluation from  to  

‣ This is generally a hard task, since it may not be a polynomial function. 

‣We devise a general evaluation method for arbitrary LUTs.  

• Functional bootstrapping for any RLWE encryptions. 

‣Similar to TFHE, it can bootstrap any RLWE ciphertext regardless the scheme. 

‣ In this work, we focus on FV and CKKS.

ℤpr ℤps



Functional Bootstrapping Pipeline

• Usage of ‘slim mode’ bootstrapping 

‣ In (normal) bootstrapping, digit extraction operates on coefficients. 

‣ Therefore, we use ‘slim mode’ ([HS18]), which operates on message. 

- Slots2Coeffs ModSwitch Coeffs2Slots DigitExtract 

- Adds the rounding noise to the message part instead of the coefficients.

→ → →



Functional Bootstrapping Pipeline
Functionality FV CKKS

Slots2Coeffs Move the messages to coefficients

ModSwitch    Switch the ciphertext modulus to

Coeffs2Slots Move the coefficients to slots

EvalLUT Evaluate LUT over the slots

pr

m(X) ∈ Rt ⌊Δ ⋅ m(X)⌉ ∈ R

⌊ pr

t ⌉ ⋅ m(X) + e(X) ∈ Rpr ⌊Δ′￼⋅ m(X)⌉ ∈ Rpr

{⌊ pr

t ⌉ ⋅ mi + ei}
1≤i≤k

∈ ℤk
pr {Δ′￼⋅ mi}1≤i≤k

∈ ℤk
pr

{f(mi)}1≤i≤k
∈ ℤk

ps {f(mi)}1≤i≤k
∈ ℤk

ps



Homomorphic LUT Evaluation (  to )ℤpr ℤp

• Given an LUT  

‣ (Hopefully) there exists a polynomial  such that . 

‣Generally, there is no such polynomial . 

• Our observation 

‣  can be written as a multivariate function of each digit of the input. 

- i.e.,  

‣ Then,  always has a polynomial representation over .

F : ℤpr → ℤp

p p(x) = pr−1 ⋅ F(x) (mod pr)

p

F

F(ur−1…u0) = F̃(u0, …, ur−1)

F̃ ℤp



Homomorphic LUT Evaluation (  to )ℤpr ℤp

• Our method 

‣Given LUT , find  such that . 

‣ During DigitExtract, each digit is extracted. 

- More precisely, compute . 

‣ Then, evaluate  using each digit. 

• Drawback 

‣ (At most)  is of degree , with  terms. 

‣ Computing such polynomial can be time-consuming.

F : ℤpr → ℤp F̃ : ℤr
p → ℤp F̃(x0, x1, …, xr−1) = F(xr−1…x0)

[pr−i−1 ⋅ ur…ui+1ui]pr−i = [ui]p

F̃

F̃ r(p − 1) pr



Heaviside Function Evaluation
• (Shifted) Heaviside Function 

‣ The most basic form of step function 

‣  

• Why Heaviside Function? 

‣ LUT for FV-to-FV functional bootstrapping 
has a form of  step function. 

‣Heaviside function is the easiest form of the 
step function family.

1x<B(x) = {0  if x < B = br−1…b0

1 otherwise



Heaviside Function Evaluation
• Recurrence Relation 

‣ Define two Heaviside Functions over  

-  

-  

‣ Construct the following recurrence relation. 

-

ℤpr−1

1x<B1
(x) = {0  if x < B1 := br−1…(b1 + 1)

1 otherwise

1x<B2
(x) = {0  if x < B2 := br−1…b1

1 otherwise

1x<B(ur−1…u1u0) = 1x<b0
(u0) ⋅ 1x<B1

(ur−1…u1) + 1x≥b0
(u1) ⋅ 1x<B2

(ur−1…u1)



Heaviside Function Evaluation
• Recurrence Relation 

‣  

-  and  has a univariate polynomial representation of . 

-  can be represented with two LUTs over , using the relation. 

➡ In fact,  and  can be represented with two identical LUTs. 

-  

-  

- It only requires  univariate polynomial evaluations of degree .

1x<B(ur−1…u1u0) = 1x<b0
(u0) ⋅ 1x<B1

(ur−1…u1) + 1x≥b0
(u0) ⋅ 1x<B2

(ur−1…u1)

1x<b0
1x≥b0

u0

1x<B1
, 1x<B2

ℤpr−2

1x<B1
1x<B2

1x<B1
(ur−1…u1) = 1x<(b1+1) ⋅ 1x<B3

(ur−1…u2) + 1x≥(b1+1) ⋅ 1x<B4
(ur−1…u2)

1x<B2
(ur−1…u1) = 1x<b1

⋅ 1x<B3
(ur−1…u2) + 1x≥b1

⋅ 1x<B4
(ur−1…u2)

2 + 4 + … + 2 = 4r − 4 p − 1



Heaviside Function Evaluation
• Algorithm 

‣ Input : Bound , (encrypted) messages  

‣ Output :  

1.  

2.     for  

3. Return 

B = br−1…b0 ∈ ℤpr u0, …, ur−1 ∈ ℤp

1x≥br−1…b0
(ur−1…u0)

x0 ← 1x≥br−1+1(ur−1)
x1 ← 1x≥br−1

(ur−1)

x0 ← 1x<bi+1(ui) ⋅ x0 + 1x≥bi+1(ui) ⋅ x1

x1 ← 1x<bi
(ui) ⋅ x0 + 1x≥bi

(ui) ⋅ x1
i = r − 2; i > 0; i − = 1

1x<b0
(u0) ⋅ x0 + 1x≥b0

(u0) ⋅ x1



Step Function Evaluation
• Step function is a linear combination of Heaviside functions. 

‣
Given an LUT , 

 
We can write  
 

where . 

• Remark : One can generalise the recurrence relation as long as .

F(x) =

α1  if x < B1
α2  if B1 ≤ x < B2
⋮

αk  if Bk−1 ≤ x

F(x) = α1 + (α2 − α1) ⋅ F1(x) + … + (αk − αk−1) ⋅ Fk−1(x)

Fi(x) = {0  if x < Bi

1 otherwise

k ≤ p



Homomorphic LUT Evaluation (  to )ℤpr ℤps

• Our method 

‣Given , define  LUTs   which outputs -th digit of . 

- i.e.,  

‣ Then, we have . 

‣ Therefore, it remains to compute . 

➡In other words, we need homomorphic lifting.

F : ℤpr → ℤps s Fi : ℤpr → ℤp i F

Fi(x) = [F(x)/pi]p
(0 ≤ i < s)

F(x) =
s−1

∑
i=0

[Fi(x)]pr
⋅ pi =

s−1

∑
i=0

[Fi(x)]pr−i

[Fi(x)]pr−i



Homomorphic Lifting
• Input : , an encryption of . 

‣ Compute . (+SubSum) 

-  is an encryption of   for some random . 

- Evaluating  returns an encryption of . 

‣Why does it not need Coeffs2Slots/Slots2Coeffs as in bootstrapping? 

- This case, the message is stored in the LSB. 

- Conversely, the message is stored in the MSB when bootstrap. 

- When  is large enough (i.e., ), depth consumption can be mitigated with 
Coeffs2Slots and Slots2Coeffs. (Use low-degree null polynomial from [MHWW24])

𝖼𝗍 = (b, a) ∈ R2
q ⃗m ∈ ℤk

p

𝖼𝗍′￼ = (⌊1/pi−1 ⋅ b⌉, ⌊1/pi−1 ⋅ a⌉) ∈ R2
q

𝖼𝗍′￼ ⃗m + p ⋅ ⃗I ⃗I ∈ ℤk
pi−1

Gi ⃗m ∈ ℤpi

i || ⃗I||∞ ≪ pi



Comparison to TFHE-like schemes
Ours TFHE Amortized TFHE 

(FHEW-like)
Amortized TFHE 

(FV/CKKS)
Amortized TFHE 

(Others)

Scheme This work [DM14], [CGGI16], 
[LMK+23]

[MS18], [GPvL23], 
[MKMS23]

[LW23], [LW24], 
[BCKS24] [LW23], [OPP23]

Remaining 
Multiplicative 

Level
O X X X O

Large Plaintext 
Modulus

O X X O ▵

SIMD 
arithmetic

O X O O O



Asymptotic Bootstrapping Complexity

Ephemeral Message Space Time Complexity

Traditional 
Bootstrapping

General 
Bootstrapping

Functional 
Bootstrapping

O(log pr + log||s||1)

O(log(||s||1))

O(log pr + log||s||1)

Δ ⋅ m + e

Δ ⋅ e1 + e2

Δ ⋅ m + e



Classification of Existing Works
BGV/FV CKKS FHEW-like

Traditional 
Bootstrapping

[HS14], [CH18], [GIKV22] [CHK+18], [CCS19], 
[HK20], [LLL+21]… -

General Bootstrapping [KSS24], [MHWW24] [KPK+22] [ADE+21]

Functional 
Bootstrapping

Our work [BCKS24] [DM14], [CGGI16], 
[LMK+23]

Others [LW23], [LW24] - [MS18], [LW23], 
[MKMS23], [OPP23]…




