Faster TFHE Bootstrapping with Block Binary Keys

Changmin Lee¹, **Seonhong Min**², Jinyeong Seo², Yongsoo Song²

¹Korea Institute for Advanced Study, Seoul ²Seoul National University, Seoul

Fully Homomorphic Encryption

- Fully Homomorphic Encryption (FHE) supports arbitrary function evaluation on encrypted data.
- Various Applications: privacy preserving machine learning, private information retrieval, private set intersection ...

Learning with Errors

- The most efficient FHEs to date are built on Learning with Errors (LWE) problem and its ring-variant Ring-LWE (RLWE).
- LWE: $(\mathbf{a},b)\approx_{c}\mathcal{U}(\mathbb{Z}_{q}^{n+1})$
 - ▶ $\mathbf{a} \leftarrow \mathcal{U}(\mathbb{Z}_q^n)$, $\mathbf{s} \in \mathbb{Z}^n$, $e \leftarrow$ small dist' over \mathbb{Z}
 - $b = -\langle \mathbf{a}, \mathbf{s} \rangle + e \pmod{q}$
- RLWE: $(a,b) \approx_c \mathcal{U}(R_q^2)$
 - ▶ Variant of LWE over $R_q = R/qR$ where $R = \mathbb{Z}[X]/(X^N + 1)$
 - ▶ $a \leftarrow \mathcal{U}(R_q)$, $s \in R$, $e \leftarrow$ small dist' over R
 - $b = -a \cdot s + e \pmod{q}$
- FHE schemes based on LWE/RLWE
 - ▶ BGV / BFV / CKKS
 - ► TFHE / FHEW

TFHE description

- FHE scheme that supports bits operations (NAND, AND, OR...).
- Secret Key:
 - LWE secret $\mathbf{s} = (s_1, \dots, s_n)$
 - RLWE secret $t = \sum_{i=1}^{N} t_i X^{i-1}$
 - Vectorized secret $\mathbf{t} = (t_1, \dots, t_N)$
 - All keys are sampled from binary distribution
- Encoding: $m \in \{-1,1\} \mapsto \mu = \frac{q}{8}m \in \mathbb{Z}_q$
- **Decoding**: $\begin{cases} 1 & \text{if } \mu > 0 \\ -1 & \text{otherwise} \end{cases}$
- Encryption: $c = (b, \mathbf{a}) \in \mathbb{Z}_q^{n+1}$ for $\mathbf{a} \leftarrow \mathcal{U}(\mathbb{Z}_q^n)$, $e \leftarrow$ small dist., $b = -\langle \mathbf{a}, \mathbf{s} \rangle + \mu + e$.
- **Decryption**: $b + \langle \mathbf{a}, \mathbf{s} \rangle = \mu + e$

Homomorphic Gate Evaluation

• Each bit operation consists of the following pipeline:

$$\begin{array}{c} c_1 \longrightarrow \\ c_2 \longrightarrow \end{array} \text{Linear Combination} \longrightarrow c \longrightarrow \begin{array}{c} \text{Bootstrapping} \\ \end{array} \longrightarrow c'$$

- **Linear Combination**: The linear combination corresponding to a Boolean gate is evaluated.
 - ex) NAND : $c = (\frac{q}{8}, \mathbf{0}) c_1 c_2$
 - output ciphertext contains a large noise e.
- Bootstrapping: Reduces the size of noise for further evaluation.
 - ex) $\|e\| < \frac{q}{8} \rightarrow \|e'\| < \frac{q}{16}$

TFHE Bootstrapping

- **Blind Rotation**: Homomorphically computes the decryption circuit on the exponent of X *i.e.*, $X^{b+\langle \mathbf{a},\mathbf{s}\rangle}$.
 - ▶ Need Blind Rotation Key : RGSW encryptions of s_i (1 ≤ $i \le n$)
- **Sample Extract**: Extract the constant term of the plaintext from the resulting RLWE ciphertext.
- Key-Switching: Switch the dimension of the LWE ciphertext.
 - ▶ Need Key-Switching Key : Gadget encryptions of t_i $(1 \le i \le N)$

Our Contribution

- Motivation: Most FHE schemes (BGV/FV/CKKS) make an additional assumption on key structure to obtain better efficiency.
 - BGV/FV : Small noise growth in homomorphic multiplication.
 - BGV/CKKS : Small depth for bootstrapping.
- Our Result : We adapt similar approach to accelerate TFHE bootstrapping.
 - Faster Blind Rotation
 - Sample LWE key from block binary key distribution
 - Reduce the number of FFT operations
 - Compact Key-Switching
 - Re-use the LWE key as a part of RLWE key
 - Improve both time and space complexity

Blind Rotation

Functionality

- Homomorphic evaluation of $tv \cdot X^{b+\sum_{i=1}^n a_i s_i} = tv \cdot X^{\frac{q}{8}m+e} \in R_q$.
 - $tv = -\frac{q}{8}(1 + X + \cdots + X^{N-1}) \in R_q.$
 - Constant term of $tv \cdot X^{\frac{q}{8}m+e} = \frac{q}{8}m$.
- Homomorphically multiply monomials $X^{a_i s_i}$ to $tv \cdot X^b$ iteratively.
- We need **n external products** total.

Previous Blind Rotation

$$ullet X^{a_i s_i} = egin{cases} X^{a_i} & (s_i = 1) \ 1 & (s_i = 0) \end{cases} = 1 + (X^{a_i} - 1) s_i$$

- Using this **key formula**, we have $[X^{a_is_i}]_t = 1 + (X^{a_i} 1)[s_i]_t$
- We iteratively multiply one monomial $X^{a_i s_i}$ for **n** times.

Observation

• Can we multiply 2 monomials simultaneously?

$$\begin{split} X^{a_1s_1+a_2s_2} \\ &= (1+(X^{a_1}-1)s_1)(1+(X^{a_2}-1)s_2) \\ &= 1+(X^{a_1}-1)s_1+(X^{a_2}-1)s_2+(X^{a_1}-1)(X^{a_2}-1)s_1s_2 \end{split}$$

- With this formula, the number of homomorphic mult reduces by half.
 - Requires RGSW encryption of s₁s₂
 - + the number of linear evaluation grows.
- What if we can ignore the case where $s_1 = s_2 = 1$?
 - No additional blind rotation keys are required.
 - ▶ The number of linear evaluation remains same.
- **Generalization**: How about ℓ monomials?
 - ightarrow Possible. If **s** is sampled from **Block Binary Key Distribution**...

Block Binary Keys

Definition (Block Binary Key)

- $n = k\ell$ for two positive integers $k, \ell > 0$
- $\mathbf{s} = (B_1, \dots, B_k) \in \{0, 1\}^n$
- $B_i \leftarrow \mathcal{U}((1,0,\ldots,0),\ldots,(0,0,\ldots,1),(0,\ldots,0))$
- At most one 1 in each block

Figure: Block Binary Key with $\ell = 3$ and k = 6

Block Binary Keys

$$X^{a_1s_1} = egin{cases} X^{a_1} & (s_1 = 1) \ 1 & (s_1 = 0) \end{cases} \ = 1 + (X^{a_1} - 1)s_1$$

 \rightarrow Multiply 1 monomial with 1 mult and 1 add.

$$X^{\sum_{i=1}^{\ell} a_i s_i} = egin{cases} X^{a_1} & (s_1=1, s_2=0, \ldots, s_\ell=0) \ dots & \ X^{a_\ell} & (s_1=0, s_2=0, \ldots, s_\ell=1) \ 1 & (s_1=0, s_2=0, \ldots, s_\ell=0) \ \end{cases} = 1 + \sum_{i=1}^{\ell} (X^{a_i}-1) s_i$$

 \rightarrow Multiply ℓ monomials with 1 mult and ℓ add.

Our Blind Rotation

- Iteratively multiplies ℓ monomials with one homomorphic multiplication.
- Only k external products are required!!
- However, not direct ℓ -times speedup due to other operations.

Algorithm

Algorithm 1 New Blind Rotation

- 1: **Input:** The blind rotation key BK and a TLWE ciphertext $\mathbf{c} = (b, \mathbf{a}) \in \mathbb{T}^{n+1}$
- 2: **Output:** A TRLWE ciphertext $ACC \in \mathbb{T}_N[X]^2$
- 3: $tv \leftarrow -\frac{1}{8} \cdot (1 + X + \cdots + X^{N-1}) \in \mathbb{T}_N[X]$
- 4: Let $\overline{b} = \lfloor 2Nb \rceil$ and $\overline{a}_i = \lfloor 2Na_i \rceil$ for $0 \le i < n$
- 5: ACC $\leftarrow (X^b \cdot \mathsf{tv}, 0) \in \mathbb{T}_N[X]^2$
- 6: **for** $0 \le j < k$ **do**
- 7: $ACC \leftarrow ACC + ACC \supseteq \left| \sum_{i \in I_j} (X^{\overline{a}_i} 1) \cdot BK_i \right|$
- 8: end for

Optimization (Hoisting)

- This algorithm requires more Floating point operations than the original blind rotation algorithm.
- Instead, we re-use the gadget decomposition of ACC for each external products. *i.e.*, h(ACC)
- Previous: $ACC \leftarrow ACC + \left\langle h(ACC), \sum_{i \in I_j} (X^{\overline{a}_i} 1) \cdot BK_i \right\rangle$
 - ▶ Modified: $ACC \leftarrow ACC + \sum_{i \in I_j} (X^{\overline{a}_i} 1) \cdot \langle h(ACC), BK_i \rangle$
- Then, the number of FFT operations is reduced with the same number of Floating point operations.

Security of Block Binary Keys

- **Asymptotic Security**: If the entropy of key distribution is sufficiently large, LWE is secure (Goldwasser et al).
 - Entropy of block binary keys : $(\ell+1)^k$
- Concrete Security: We conducted cryptanalysis considering the best-known lattice attacks.
 - Dual attack
 - ► Meet-in-the-Middle
 - ▶ Tailor-made

Dual Attack

Dual Attack

- Dual Attack is effective for sparse secret.
- Run lattice-estimator with respect to (expected) Hamming weight $n/(\ell+1)$ and LWE dimension n.

Modified Dual Attack

- With one guessing, one can reduce ℓ dimension at once.
- Therefore, one can reduce t blocks by guessing and then exploit dual attack.
- Then, the cost is $O((\ell+1)^t \cdot \mathcal{T})$ where \mathcal{T} is the cost of dual attack on LWE of dimension $n-t\ell$ under secret with (expected) Hamming weight $(n-t\ell)/(\ell+1)$.

MitM attack

- MitM algorithm
 - Given secret \mathbf{s} , split the secret vector into $\mathbf{s} = \mathbf{s}_0 + \mathbf{s}_1$.
 - For an LWE instance (b, \mathbf{a}) , $b + \langle \mathbf{s}_0, \mathbf{a} \rangle \approx -\langle \mathbf{s}_1, \mathbf{a} \rangle$ since $b + \langle \mathbf{a}, \mathbf{s} \rangle$ is small.
 - Therefore, we can find the collision between two sets in time $\mathcal{S}^{0.5}$:

$$\mathcal{R}_0 = \{ b + \langle \mathbf{x}_0, \mathbf{a} \rangle \mid \|\mathbf{x}_0\|_1 = \|\mathbf{s}\|_1/2 \}$$

$$\mathcal{R}_1 = \{ -\langle \mathbf{x}_1, \mathbf{a} \rangle \mid \|\mathbf{x}_1\|_1 = \|\mathbf{s}\|_1/2 \}$$

- May et al. (2021)
 - Inductively perform MitM algorithm to $\mathbf{s}_0, \mathbf{s}_1$.
 - Overall cost requires $\geq \mathcal{S}^{0.28}$ time complexity.
- Since $S = (\ell + 1)^k$, the cost is $2^{O(0.28k \log(\ell+1))}$.
- In other words, it achieves $0.28k \log(\ell+1)$ -bit security.

Key-Switching

Functionality

- Switch the secret key of LWE ciphertext from t to s.
- For LWE ciphertext $\mathbf{c} = (b, a_1, \dots, a_N)$ encrypted under \mathbf{t} , we compute $\mathbf{c}' = (b, 0, \dots, 0) + \sum_{i=1}^{N} a_i \odot \mathsf{Enc}_{\mathbf{s}}(t_i)$.
 - ▶ $Enc_s(t_i)$: Gadget encryptions of t_i under s $(1 \le i \le N)$.
 - ► $Dec_{\mathbf{s}}(\mathbf{c}') \approx b + \sum_{i=1}^{N} a_i t_i = Dec_{\mathbf{t}}(\mathbf{c}).$

Complexity

- ► Time : **N** homomorphic scalar multiplications.
- ► Space: **N** key-switching keys

Compact Key-Switching

• If $t_i = s_i \ (1 \le i \le n)$, we can replace \mathbf{c}' by

$$(b, a_1, \ldots, a_n) + \sum_{i=n+1}^N a_i \odot \mathsf{Enc}_{\mathsf{s}}(t_i)$$

► $Dec_{s}(\mathbf{c}') \approx b + \sum_{i=1}^{n} a_{i}s_{i} + \sum_{i=n+1}^{N} a_{i}t_{i} = b + \sum_{i=1}^{N} a_{i}t_{i} = Dec_{t}(\mathbf{c}).$

Complexity

- ▶ Time : $\mathbf{N} \mathbf{n}$ scalar multiplications
- ▶ Space : $\mathbf{N} \mathbf{n}$ key-switching keys

Compact Key-Switching

Security Analysis of Compact Key-Switching

- **Dual Attack**: Run the lattice estimator with LWE dimension N, (expected) Hamming weight $n/(\ell+1)+(N-n)/2$.
- MitM Attack: The security relies on the LWE security.

Parameter Selection

- We set the parameters with respect to the Dual and MitM attack.
- Given ℓ , we can set $k = \lceil 457.143/\log(\ell+1) \rceil$.

$n = k\ell$	Ν	ℓ	Dual	MitM
630	1024	2	130.7	139.7
687	1024	3	130.7	128.2
788	1024	4	129.9	128.0
885	1024	5	128.9	128.1
978	1024	6	128.0	128.1

Implementation & Result

	ℓ	n	Bootstrapping	Key Size
TFHE		630	10.53 <i>ms</i>	109 MB
Ours	2	630	7.05 <i>ms</i>	
	3	687	6.49 <i>ms</i>	60 MB
	4	788	6.70 <i>ms</i>	
	5	885	6.82 <i>ms</i>	56 MB
	6	978	7.12 ms	52 MB

Table: 128-bit Security level

- Implemented based on the TFHE library.
- We achieve 1.5-1.6x SPEEDUP!
- Key size is reduced by 1.8x!

Further Applications

- This technique can be applied to many TFHE-like cryptosystems.
- It works as long as the algebraic structure remains the same.
 - ▶ O PBS, WoP-PBS, Chimera...
 - ▶ **O** MK-TFHE
 - The secret key for MK ciphertexts is the concatenated vector of each secret key.
 - O AP/FHEW
 - Secret key sampled from block n-ary distribution.
 - Originally, keys were given by RGSW encryptions of $X^{jB^k \cdot s_i}$ (X^{s_i} in LMKC+22).
 - Instead, provide RGSW encryptions of 0 if s_i is zero.
 - ▲ MP-TFHE (n-out-of-n Threshold TFHE)
 - The secret key for MP ciphertexts is the sum of each secret key.
 - Can be applied to a naïve solution (AKO23).
 - Cannot be applied to the state-of-the art schemes (LMKC+22, PR23).

Multi-Key TFHE

#Parties	2	4	8	16	32
KMS	0.25 <i>s</i>	0.87 <i>s</i>	2.24 <i>s</i>	5.62 <i>s</i>	14.04 <i>s</i>
Block	0.14 <i>s</i>	0.49 <i>s</i>	1.17 s	3.30 <i>s</i>	7.68 <i>s</i>

Table: 128-bit Security level

- We achieve 1.7-1.9x SPEEDUP.
- The performance improvement is better than single-key scheme.
- The size of the key-switching key is also reduced.

Implementations

- Source code is available at github.com/SNUCP/blockkey-tfhe
- MK implementation (Julia): github.com/SNUCP/MKTFHE
- PBS implementation (Go) : github.com/sp301415/tfhe-go

