
Faster TFHE Bootstrapping
with Block Binary Keys

Changmin Lee1, Seonhong Min2, Jinyeong Seo2, Yongsoo Song2

1Korea Institute for Advanced Study, Seoul
2Seoul National University, Seoul

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 1 / 28

Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) supports arbitrary function
evaluation on encrypted data.

Various Applications: privacy preserving machine learning, private
information retrieval, private set intersection ...

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 2 / 28

Learning with Errors

The most efficient FHEs to date are built on Learning with Errors
(LWE) problem and its ring-variant Ring-LWE (RLWE).

LWE: (a, b) ≈c U(Zn+1
q)

▶ a← U(Zn
q), s ∈ Zn, e ← small dist’ over Z

▶ b = −⟨a, s⟩+ e (mod q)

RLWE: (a, b) ≈c U(R2
q)

▶ Variant of LWE over Rq = R/qR where R = Z[X]/(XN + 1)

▶ a← U(Rq), s ∈ R, e ← small dist’ over R

▶ b = −a · s + e (mod q)

FHE schemes based on LWE/RLWE
▶ BGV / BFV / CKKS
▶ TFHE / FHEW

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 3 / 28

TFHE description

FHE scheme that supports bits operations (NAND, AND, OR. . .).

Secret Key:
– LWE secret s = (s1, . . . , sn)

– RLWE secret t =
∑N

i=1 tiX
i−1

– Vectorized secret t = (t1, . . . , tN)
– All keys are sampled from binary distribution

Encoding: m ∈ {−1, 1} 7→ µ = q
8m ∈ Zq

Decoding:

{
1 if µ > 0

−1 otherwise

Encryption: c = (b, a) ∈ Zn+1
q for a← U(Zn

q), e ← small dist.,
b = −⟨a, s⟩+ µ+ e.

Decryption: b + ⟨a, s⟩ = µ+ e

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 4 / 28

Homomorphic Gate Evaluation

Each bit operation consists of the following pipeline:

Linear Combination : The linear combination corresponding to a
Boolean gate is evaluated.

– ex) NAND : c = (q8 , 0)− c1 − c2
– output ciphertext contains a large noise e.

Bootstrapping : Reduces the size of noise for further evaluation.

– ex) ∥e∥ < q
8 → ∥e

′∥ < q
16

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 5 / 28

TFHE Bootstrapping

Blind Rotation : Homomorphically computes the decryption circuit
on the exponent of X i.e., X b+⟨a,s⟩.

▶ Need Blind Rotation Key : RGSW encryptions of si (1 ≤ i ≤ n)

Sample Extract : Extract the constant term of the plaintext from
the resulting RLWE ciphertext.

Key-Switching : Switch the dimension of the LWE ciphertext.
▶ Need Key-Switching Key : Gadget encryptions of ti (1 ≤ i ≤ N)

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 6 / 28

Our Contribution

Motivation : Most FHE schemes (BGV/FV/CKKS) make an additional
assumption on key structure to obtain better efficiency.

– BGV/FV : Small noise growth in homomorphic
multiplication.

– BGV/CKKS : Small depth for bootstrapping.

Our Result : We adapt similar approach to accelerate TFHE
bootstrapping.

1 Faster Blind Rotation
– Sample LWE key from block binary key distribution
– Reduce the number of FFT operations

2 Compact Key-Switching
– Re-use the LWE key as a part of RLWE key
– Improve both time and space complexity

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 7 / 28

Blind Rotation

Functionality

Homomorphic evaluation of tv · X b+
∑n

i=1 ai si = tv · X
q
8
m+e ∈ Rq.

▶ tv = − q
8 (1 + X + · · ·+ XN−1) ∈ Rq.

▶ Constant term of tv · X
q
8m+e = q

8m.

Homomorphically multiply monomials X ai si to tv · X b iteratively.

We need n external products total.

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 8 / 28

Previous Blind Rotation

X ai si =

{
X ai (si = 1)

1 (si = 0)
= 1 + (X ai − 1)si

– Using this key formula, we have [X ai si]t = 1 + (X ai − 1)[si]t
– We iteratively multiply one monomial X ai si for n times.

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 9 / 28

Observation

Can we multiply 2 monomials simultaneously?

X a1s1+a2s2

= (1 + (X a1 − 1)s1)(1 + (X a2 − 1)s2)

= 1 + (X a1 − 1)s1 + (X a2 − 1)s2+(X a1 − 1)(X a2 − 1)s1s2

With this formula, the number of homomorphic mult reduces by half.
▶ Requires RGSW encryption of s1s2
▶ + the number of linear evaluation grows.

What if we can ignore the case where s1 = s2 = 1?
▶ No additional blind rotation keys are required.
▶ The number of linear evaluation remains same.

Generalization: How about ℓ monomials?
→ Possible. If s is sampled from Block Binary Key Distribution...

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 10 / 28

Block Binary Keys

Definition (Block Binary Key)

n = kℓ for two positive integers k , ℓ > 0

s = (B1, . . . ,Bk) ∈ {0, 1}n

Bi ← U((1, 0, . . . , 0), . . . , (0, 0, . . . , 1), (0, . . . , 0))

At most one 1 in each block

Figure: Block Binary Key with ℓ = 3 and k = 6

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 11 / 28

Block Binary Keys

X a1s1 =

{
X a1 (s1 = 1)

1 (s1 = 0)

= 1 + (X a1 − 1)s1

→ Multiply 1 monomial with 1 mult and 1 add.

X
∑ℓ

i=1 ai si =


X a1 (s1 = 1, s2 = 0, . . . , sℓ = 0)
...

X aℓ (s1 = 0, s2 = 0, . . . , sℓ = 1)

1 (s1 = 0, s2 = 0, . . . , sℓ = 0)

= 1 +
ℓ∑

i=1

(X ai − 1)si

→ Multiply ℓ monomials with 1 mult and ℓ add.

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 12 / 28

Our Blind Rotation

Iteratively multiplies ℓ monomials with one homomorphic
multiplication.

Only k external products are required!!

However, not direct ℓ-times speedup due to other operations.

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 13 / 28

Algorithm

Algorithm 1 New Blind Rotation

1: Input: The blind rotation key BK and a TLWE ciphertext c = (b, a) ∈
Tn+1

2: Output: A TRLWE ciphertext ACC ∈ TN [X]2

3: tv← −1
8 · (1 + X + · · ·+ XN−1) ∈ TN [X]

4: Let b = ⌊2Nb⌉ and ai = ⌊2Nai⌉ for 0 ≤ i < n

5: ACC← (X b · tv, 0) ∈ TN [X]2

6: for 0 ≤ j < k do

7: ACC← ACC+ ACC⊡
[∑

i∈Ij (X
ai − 1) · BKi

]
8: end for

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 14 / 28

Optimization (Hoisting)

This algorithm requires more Floating point operations than the
original blind rotation algorithm.

Instead, we re-use the gadget decomposition of ACC for each external
products. i.e., h(ACC)

▶ Previous: ACC← ACC+
〈
h(ACC),

∑
i∈Ij

(X ai − 1) · BKi
〉

▶ Modified: ACC← ACC+
∑

i∈Ij
(X ai − 1) · ⟨h(ACC), BKi ⟩

Then, the number of FFT operations is reduced with the same
number of Floating point operations.

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 15 / 28

Security of Block Binary Keys

Asymptotic Security : If the entropy of key distribution is
sufficiently large, LWE is secure (Goldwasser et al).

– Entropy of block binary keys : (ℓ+ 1)k

Concrete Security : We conducted cryptanalysis considering the
best-known lattice attacks.

▶ Dual attack

▶ Meet-in-the-Middle

▶ Tailor-made

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 16 / 28

Dual Attack

Dual Attack
– Dual Attack is effective for sparse secret.

– Run lattice-estimator with respect to (expected) Hamming weight
n/(ℓ+ 1) and LWE dimension n.

Modified Dual Attack
– With one guessing, one can reduce ℓ dimension at once.

– Therefore, one can reduce t blocks by guessing and then exploit dual
attack.

– Then, the cost is O((ℓ+ 1)t · T) where T is the cost of dual attack on
LWE of dimension n − tℓ under secret with (expected) Hamming
weight (n − tℓ)/(ℓ+ 1).

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 17 / 28

MitM attack

MitM algorithm

– Given secret s, split the secret vector into s = s0 + s1.

– For an LWE instance (b, a), b + ⟨s0, a⟩ ≈ − ⟨s1, a⟩ since b + ⟨a, s⟩ is
small.

– Therefore, we can find the collision between two sets in time S0.5:

R0 = {b + ⟨x0, a⟩ | ∥x0∥1 = ∥s∥1/2}
R1 = {− ⟨x1, a⟩ | ∥x1∥1 = ∥s∥1/2}

May et al. (2021)

– Inductively perform MitM algorithm to s0, s1.
– Overall cost requires ≥ S0.28 time complexity.

Since S = (ℓ+ 1)k , the cost is 2O(0.28k log(ℓ+1)).

In other words, it achieves 0.28k log(ℓ+ 1)-bit security.

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 18 / 28

Key-Switching

Functionality

Switch the secret key of LWE ciphertext from t to s.

For LWE ciphertext c = (b, a1, . . . , aN) encrypted under t, we
compute c′ = (b, 0, . . . , 0) +

∑N
i=1 ai ⊙ Encs(ti).

▶ Encs(ti): Gadget encryptions of ti under s (1 ≤ i ≤ N).

▶ Decs(c′) ≈ b +
∑N

i=1 ai ti = Dect(c).

Complexity

▶ Time : N homomorphic scalar multiplications.

▶ Space: N key-switching keys

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 19 / 28

Compact Key-Switching

If ti = si (1 ≤ i ≤ n), we can replace c′ by

(b, a1, . . . , an) +
N∑

i=n+1

ai ⊙ Encs(ti)

▶ Decs(c′) ≈ b +
∑n

i=1 ai si +
∑N

i=n+1 ai ti = b +
∑N

i=1 ai ti = Dect(c).

Complexity

▶ Time : N− n scalar multiplications

▶ Space : N− n key-switching keys

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 20 / 28

Compact Key-Switching

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 21 / 28

Security Analysis of Compact Key-Switching

Dual Attack : Run the lattice estimator with LWE dimension N,
(expected) Hamming weight n/(ℓ+ 1) + (N − n)/2.

MitM Attack : The security relies on the LWE security.

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 22 / 28

Parameter Selection

We set the parameters with respect to the Dual and MitM attack.

Given ℓ, we can set k = ⌈457.143/ log(ℓ+ 1)⌉.

n = kℓ N ℓ Dual MitM

630 1024 2 130.7 139.7

687 1024 3 130.7 128.2

788 1024 4 129.9 128.0

885 1024 5 128.9 128.1

978 1024 6 128.0 128.1

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 23 / 28

Implementation & Result

ℓ n Bootstrapping Key Size

TFHE · 630 10.53 ms 109 MB

2 630 7.05 ms

3 687 6.49 ms 60 MB

Ours 4 788 6.70 ms

5 885 6.82 ms 56 MB

6 978 7.12 ms 52 MB

Table: 128-bit Security level

Implemented based on the TFHE library.

We achieve 1.5-1.6x SPEEDUP!

Key size is reduced by 1.8x!

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 24 / 28

Further Applications

This technique can be applied to many TFHE-like cryptosystems.

It works as long as the algebraic structure remains the same.
▶ O PBS, WoP-PBS, Chimera...

▶ O MK-TFHE

– The secret key for MK ciphertexts is the concatenated vector of each
secret key.

▶ O AP/FHEW

– Secret key sampled from block n-ary distribution.

– Originally, keys were given by RGSW encryptions of X jBk ·si (X si in
LMKC+22).

– Instead, provide RGSW encryptions of 0 if si is zero.

▶ ∆ MP-TFHE (n-out-of-n Threshold TFHE)

– The secret key for MP ciphertexts is the sum of each secret key.
– Can be applied to a näıve solution (AKÖ23).
– Cannot be applied to the state-of-the art schemes (LMKC+22, PR23).

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 25 / 28

Multi-Key TFHE

#Parties 2 4 8 16 32

KMS 0.25 s 0.87 s 2.24 s 5.62 s 14.04 s

Block 0.14 s 0.49 s 1.17 s 3.30 s 7.68 s

Table: 128-bit Security level

We achieve 1.7-1.9x SPEEDUP.

The performance improvement is better than single-key scheme.

The size of the key-switching key is also reduced.

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 26 / 28

Implementations

Source code is available at github.com/SNUCP/blockkey-tfhe

MK implementation (Julia) : github.com/SNUCP/MKTFHE

PBS implementation (Go) : github.com/sp301415/tfhe-go

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 27 / 28

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 28 / 28

