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Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) supports arbitrary function
evaluation on encrypted data.

Various Applications: privacy preserving machine learning, private
information retrieval, private set intersection ...
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Learning with Errors

The most efficient FHEs to date are built on Learning with Errors
(LWE) problem and its ring-variant Ring-LWE (RLWE).

LWE: (a, b) ≈c U(Zn+1
q )

▶ a← U(Zn
q), s ∈ Zn, e ← small dist’ over Z

▶ b = −⟨a, s⟩+ e (mod q)

RLWE: (a, b) ≈c U(R2
q)

▶ Variant of LWE over Rq = R/qR where R = Z[X ]/(XN + 1)

▶ a← U(Rq), s ∈ R, e ← small dist’ over R

▶ b = −a · s + e (mod q)

FHE schemes based on LWE/RLWE
▶ BGV / BFV / CKKS
▶ TFHE / FHEW
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TFHE description

FHE scheme that supports bits operations (NAND, AND, OR. . . ).

Secret Key:
– LWE secret s = (s1, . . . , sn)

– RLWE secret t =
∑N

i=1 tiX
i−1

– Vectorized secret t = (t1, . . . , tN)
– All keys are sampled from binary distribution

Encoding: m ∈ {−1, 1} 7→ µ = q
8m ∈ Zq

Decoding:

{
1 if µ > 0

−1 otherwise

Encryption: c = (b, a) ∈ Zn+1
q for a← U(Zn

q), e ← small dist.,
b = −⟨a, s⟩+ µ+ e.

Decryption: b + ⟨a, s⟩ = µ+ e
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Homomorphic Gate Evaluation

Each bit operation consists of the following pipeline:

Linear Combination : The linear combination corresponding to a
Boolean gate is evaluated.

– ex) NAND : c = ( q8 , 0)− c1 − c2
– output ciphertext contains a large noise e.

Bootstrapping : Reduces the size of noise for further evaluation.

– ex) ∥e∥ < q
8 → ∥e

′∥ < q
16
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TFHE Bootstrapping

Blind Rotation : Homomorphically computes the decryption circuit
on the exponent of X i.e., X b+⟨a,s⟩.

▶ Need Blind Rotation Key : RGSW encryptions of si (1 ≤ i ≤ n)

Sample Extract : Extract the constant term of the plaintext from
the resulting RLWE ciphertext.

Key-Switching : Switch the dimension of the LWE ciphertext.
▶ Need Key-Switching Key : Gadget encryptions of ti (1 ≤ i ≤ N)
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Our Contribution

Motivation : Most FHE schemes (BGV/FV/CKKS) make an additional
assumption on key structure to obtain better efficiency.

– BGV/FV : Small noise growth in homomorphic
multiplication.

– BGV/CKKS : Small depth for bootstrapping.

Our Result : We adapt similar approach to accelerate TFHE
bootstrapping.

1 Faster Blind Rotation
– Sample LWE key from block binary key distribution
– Reduce the number of FFT operations

2 Compact Key-Switching
– Re-use the LWE key as a part of RLWE key
– Improve both time and space complexity
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Blind Rotation

Functionality

Homomorphic evaluation of tv · X b+
∑n

i=1 ai si = tv · X
q
8
m+e ∈ Rq.

▶ tv = − q
8 (1 + X + · · ·+ XN−1) ∈ Rq.

▶ Constant term of tv · X
q
8m+e = q

8m.

Homomorphically multiply monomials X ai si to tv · X b iteratively.

We need n external products total.
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Previous Blind Rotation

X ai si =

{
X ai (si = 1)

1 (si = 0)
= 1 + (X ai − 1)si

– Using this key formula, we have [X ai si ]t = 1 + (X ai − 1)[si ]t
– We iteratively multiply one monomial X ai si for n times.
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Observation

Can we multiply 2 monomials simultaneously?

X a1s1+a2s2

= (1 + (X a1 − 1)s1)(1 + (X a2 − 1)s2)

= 1 + (X a1 − 1)s1 + (X a2 − 1)s2+(X a1 − 1)(X a2 − 1)s1s2

With this formula, the number of homomorphic mult reduces by half.
▶ Requires RGSW encryption of s1s2
▶ + the number of linear evaluation grows.

What if we can ignore the case where s1 = s2 = 1?
▶ No additional blind rotation keys are required.
▶ The number of linear evaluation remains same.

Generalization: How about ℓ monomials?
→ Possible. If s is sampled from Block Binary Key Distribution...
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Block Binary Keys

Definition (Block Binary Key)

n = kℓ for two positive integers k , ℓ > 0

s = (B1, . . . ,Bk) ∈ {0, 1}n

Bi ← U((1, 0, . . . , 0), . . . , (0, 0, . . . , 1), (0, . . . , 0))

At most one 1 in each block

Figure: Block Binary Key with ℓ = 3 and k = 6
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Block Binary Keys

X a1s1 =

{
X a1 (s1 = 1)

1 (s1 = 0)

= 1 + (X a1 − 1)s1

→ Multiply 1 monomial with 1 mult and 1 add.

X
∑ℓ

i=1 ai si =


X a1 (s1 = 1, s2 = 0, . . . , sℓ = 0)
...

X aℓ (s1 = 0, s2 = 0, . . . , sℓ = 1)

1 (s1 = 0, s2 = 0, . . . , sℓ = 0)

= 1 +
ℓ∑

i=1

(X ai − 1)si

→ Multiply ℓ monomials with 1 mult and ℓ add.
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Our Blind Rotation

Iteratively multiplies ℓ monomials with one homomorphic
multiplication.

Only k external products are required!!

However, not direct ℓ-times speedup due to other operations.
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Algorithm

Algorithm 1 New Blind Rotation

1: Input: The blind rotation key BK and a TLWE ciphertext c = (b, a) ∈
Tn+1

2: Output: A TRLWE ciphertext ACC ∈ TN [X ]2

3: tv← −1
8 · (1 + X + · · ·+ XN−1) ∈ TN [X ]

4: Let b = ⌊2Nb⌉ and ai = ⌊2Nai⌉ for 0 ≤ i < n

5: ACC← (X b · tv, 0) ∈ TN [X ]2

6: for 0 ≤ j < k do

7: ACC← ACC+ ACC⊡
[∑

i∈Ij (X
ai − 1) · BKi

]
8: end for
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Optimization (Hoisting)

This algorithm requires more Floating point operations than the
original blind rotation algorithm.

Instead, we re-use the gadget decomposition of ACC for each external
products. i.e., h(ACC)

▶ Previous: ACC← ACC+
〈
h(ACC),

∑
i∈Ij

(X ai − 1) · BKi
〉

▶ Modified: ACC← ACC+
∑

i∈Ij
(X ai − 1) · ⟨h(ACC), BKi ⟩

Then, the number of FFT operations is reduced with the same
number of Floating point operations.
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Security of Block Binary Keys

Asymptotic Security : If the entropy of key distribution is
sufficiently large, LWE is secure (Goldwasser et al).

– Entropy of block binary keys : (ℓ+ 1)k

Concrete Security : We conducted cryptanalysis considering the
best-known lattice attacks.

▶ Dual attack

▶ Meet-in-the-Middle

▶ Tailor-made
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Dual Attack

Dual Attack
– Dual Attack is effective for sparse secret.

– Run lattice-estimator with respect to (expected) Hamming weight
n/(ℓ+ 1) and LWE dimension n.

Modified Dual Attack
– With one guessing, one can reduce ℓ dimension at once.

– Therefore, one can reduce t blocks by guessing and then exploit dual
attack.

– Then, the cost is O((ℓ+ 1)t · T ) where T is the cost of dual attack on
LWE of dimension n − tℓ under secret with (expected) Hamming
weight (n − tℓ)/(ℓ+ 1).
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MitM attack

MitM algorithm

– Given secret s, split the secret vector into s = s0 + s1.

– For an LWE instance (b, a), b + ⟨s0, a⟩ ≈ − ⟨s1, a⟩ since b + ⟨a, s⟩ is
small.

– Therefore, we can find the collision between two sets in time S0.5:

R0 = {b + ⟨x0, a⟩ | ∥x0∥1 = ∥s∥1/2}
R1 = {− ⟨x1, a⟩ | ∥x1∥1 = ∥s∥1/2}

May et al. (2021)

– Inductively perform MitM algorithm to s0, s1.
– Overall cost requires ≥ S0.28 time complexity.

Since S = (ℓ+ 1)k , the cost is 2O(0.28k log(ℓ+1)).

In other words, it achieves 0.28k log(ℓ+ 1)-bit security.
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Key-Switching

Functionality

Switch the secret key of LWE ciphertext from t to s.

For LWE ciphertext c = (b, a1, . . . , aN) encrypted under t, we
compute c′ = (b, 0, . . . , 0) +

∑N
i=1 ai ⊙ Encs(ti ).

▶ Encs(ti ): Gadget encryptions of ti under s (1 ≤ i ≤ N).

▶ Decs(c′) ≈ b +
∑N

i=1 ai ti = Dect(c).

Complexity

▶ Time : N homomorphic scalar multiplications.

▶ Space: N key-switching keys

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 19 / 28



Compact Key-Switching

If ti = si (1 ≤ i ≤ n), we can replace c′ by

(b, a1, . . . , an) +
N∑

i=n+1

ai ⊙ Encs(ti )

▶ Decs(c′) ≈ b +
∑n

i=1 ai si +
∑N

i=n+1 ai ti = b +
∑N

i=1 ai ti = Dect(c).

Complexity

▶ Time : N− n scalar multiplications

▶ Space : N− n key-switching keys

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 20 / 28



Compact Key-Switching
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Security Analysis of Compact Key-Switching

Dual Attack : Run the lattice estimator with LWE dimension N,
(expected) Hamming weight n/(ℓ+ 1) + (N − n)/2.

MitM Attack : The security relies on the LWE security.
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Parameter Selection

We set the parameters with respect to the Dual and MitM attack.

Given ℓ, we can set k = ⌈457.143/ log(ℓ+ 1)⌉.

n = kℓ N ℓ Dual MitM

630 1024 2 130.7 139.7

687 1024 3 130.7 128.2

788 1024 4 129.9 128.0

885 1024 5 128.9 128.1

978 1024 6 128.0 128.1
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Implementation & Result

ℓ n Bootstrapping Key Size

TFHE · 630 10.53 ms 109 MB

2 630 7.05 ms

3 687 6.49 ms 60 MB

Ours 4 788 6.70 ms

5 885 6.82 ms 56 MB

6 978 7.12 ms 52 MB

Table: 128-bit Security level

Implemented based on the TFHE library.

We achieve 1.5-1.6x SPEEDUP!

Key size is reduced by 1.8x!
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Further Applications

This technique can be applied to many TFHE-like cryptosystems.

It works as long as the algebraic structure remains the same.
▶ O PBS, WoP-PBS, Chimera...

▶ O MK-TFHE

– The secret key for MK ciphertexts is the concatenated vector of each
secret key.

▶ O AP/FHEW

– Secret key sampled from block n-ary distribution.

– Originally, keys were given by RGSW encryptions of X jBk ·si (X si in
LMKC+22).

– Instead, provide RGSW encryptions of 0 if si is zero.

▶ ∆ MP-TFHE (n-out-of-n Threshold TFHE)

– The secret key for MP ciphertexts is the sum of each secret key.
– Can be applied to a näıve solution (AKÖ23).
– Cannot be applied to the state-of-the art schemes (LMKC+22, PR23).
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Multi-Key TFHE

#Parties 2 4 8 16 32

KMS 0.25 s 0.87 s 2.24 s 5.62 s 14.04 s

Block 0.14 s 0.49 s 1.17 s 3.30 s 7.68 s

Table: 128-bit Security level

We achieve 1.7-1.9x SPEEDUP.

The performance improvement is better than single-key scheme.

The size of the key-switching key is also reduced.
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Implementations

Source code is available at github.com/SNUCP/blockkey-tfhe

MK implementation (Julia) : github.com/SNUCP/MKTFHE

PBS implementation (Go) : github.com/sp301415/tfhe-go
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